
System Identification – OE method

Costandin Marius

1 Theory

Let t0, t1, . . . , tN be some time moments in arithmetic progression, ti+1 − ti = Ts, with the
ratio being the sampling time. We denote the output of the process by the letter y and the
input of the process by the letter u. Furthermore, for simplicity of notation, let yk = y(tk)
and uk = u(tk), that is the output of the process which is measured at the time moment tk
respectively the input which is given to the process at the time moment tk.

Then let

Y(z) =
∑
k∈Z

yk · z−k U(z) =
∑
k∈Z

uk · z−k (1)

be the so called Z transforms of the sequences (yk)k∈Z and (uk)k∈Z with yk = 0 for an integer
k ≤ 0 and uk = 0 for an integer k < 0.

The OE method considers the following input-output relation:

Y(z) =
B(z)

F (z)
· z−np · U(z) + E(z) (2)

where

B(z) = b1 · z−1 + . . .+ bnb
· z−nb

F (z) = 1 + f1 · z−1 + . . .+ fnf
· z−na (3)

with nf , nb, np ∈ N∪{0}. Multiplying both sides by F (z) and applying the inverse Z transform,
one obtains:

yk + f1 · yk−1 + . . .+ fnf
· yk−nf

=b1 · uk−np−1 + . . .+ bnb
· uk−np−nb

+

+ ek + f1 · ek−1 + . . .+ fnf
· ek−nf

(4)

hence it is obtained:

ek = yk+f1 · yk−1 + . . .+ fnf
· yk−nf

− b1 · uk−np−1 − . . .− bnb
· uk−np−nb

−
−f1 · ek−1 − . . .− fnf

· ek−nf
(5)

Let, as before,

J =
N∑
k=1

e2k (6)

It is obvious, from (5), that once yk and uk are known (measured), J depends upon the

choice of θ =
[
f1 . . . fnf

b1 . . . bnb

]T
. We search for θ such that J is minimized. This,

unlike the ARX case, is a nonlinear optimization problem in the variable θ. Indeed, in the ARX
case, one finds θ by simply letting ∂J

∂θ = 0n× 1 (where n is the length of θ), which turns out to
be a linear equation in θ, see ARX method. In order to further exemplify this problem, assume
the simpler case where nf = nb = 1, np = 0:

ek = yk + f · yk−1 + b · uk−1 − f · ek−1
∂ek
∂f

= yk−1 − ek−1 − f ·
∂ek−1
∂f

∂ek
∂b

= . . . (7)

1

If one requires {
∂J
∂f = 2 ·

∑N
k=1 ek ·

∂ek
∂f = 0

∂J
∂b = 2 ·

∑N
k=1 ek ·

∂ek
∂b = 0

(8)

then replacing (7) in (8), one can see that the equations do NOT remain linear in f and b.
In this condition, we search for θ which minimizes J using an iterative algorithm. Start

with a ‘guess‘ of θ0 (for instance initialize θ with random numbers) and then ‘improve‘ at each
iteration. There are many ways to make this ‘improvement‘, see optimization algorithms.

Many optimization algorithms function in the following way: at each iteration/improvement
l, they provide a direction Vl and a scalar αl. The new computed θl+1 will be:

θl+1 = θl + αl · Vl (9)

For this laboratory, we will use/be inspired from, the so called, Gauss-Newton algorithm:

θl+1 = θl − α ·H−1 · ∇TJ (10)

therefore, the scalar will be α which remains constant for all iterations, and the direction is
Vl = −H−1 · ∇TJ . The exact meaning of these will follow shortly. In order to elegantly explain
who H is, we will recall the so called ‘nabla‘ operator:

∇ =
[
∂
∂f1

. . . ∂
∂bnb

]
(11)

therefore ∇TJ = ∂J
∂θ =

∂J
∂f1
...
∂J
∂bnb

. With this in mind, one defines H = ∇T · ∇ · J , the Hessian

matrix. Therefore:

∇TJ =
N∑
k=1

∇T e2k = 2 ·
N∑
k=1

ek ·
∂ek
∂θ

H = ∇T · ∇J =

∂
∂f1
...
∂

∂bnb

 · [∂
∂f1

. . . ∂
∂bnb

]
J =

N∑
k=1

∇T · ∇ · e2k

= 2 ·
N∑
k=1

∇T · (ek · ∇ek) = 2 ·
N∑
k=1

∇T ek · ∇ek + 2 ·
N∑
k=1

ek · ∇T∇ek (12)

However, for this algorithm, we will approximate (Gauss-Newton) the Hessian matrix with just
its first sum (this is convenient, since we are not required to compute the second derivative of
the error, which would be even more complicated than the first, as will be seen in the sequel):

H ≈ 2 ·
N∑
k=1

∂ek
∂θ
·
∂eTk
∂θ

(13)

where ∂ek
∂θ is found by integrating the following dynamical system:

∂ek
∂f1

= yk−1 − ek−1 − f1 · ∂ek−1

∂f1
− . . .− fnf

·
∂ek−nf

∂f1
∂ek
∂f2

= yk−2 − ek−2 − f1 · ∂ek−1

∂f2
− . . .− fnf

·
∂ek−nf

∂f2
...

∂ek
∂b1

= −uk−np−1 − f1 ·
∂ek−1

∂b1
− . . .− fnf

·
∂ek−nf

∂b1
...

∂ek
∂bnb

= −uk−np−nb
− f1 · ∂ek−1

∂bnb
− . . .− fnf

·
∂ek−nf

∂bnb

(14)

2

Remark 1.1 In order to implement the above dynamical system for the calculation of e, we
define the following matrices

Lk =
[
yk−1 . . . yk−nf

−uk−1−np . . . −uk−nb−np

]T
Lek =

[
−ek−1 . . . −ek−nf

0 . . . 0
]T

dEk =
[
∂ek−1

∂θ
∂ek−2

∂θ . . .
∂ek−nf

∂θ

]

θf =

 f1...
fnf

 θb =

 b1...
bnb

 (15)

Let xj the the j’th element from the vector θ, then

∂ek
∂xj

= Lk(j) + Lek(j)− dEk(j, :) · θf ⇐⇒
∂ek
∂θ

= Lk + Lek − dEk · θf (16)

where Lk(j) denotes the j’th element from the vector Lk and dEk(j, :) denotes the j’th column
from matrix dEk.

Before implementing the algorithm, one must answer the following question: how does such
an algorithm know when to stop? Well, as you might have noticed each iteration is indexed
(by the letter ‘l‘), so one stopping method is to make at most M iterations. The value of M is
chosen by you, based on trial and error ... pretty much. It will however, be indicated by the
lab assistant. However, another way of stopping the algorithm is to verify the norm ‖θl+1− θl‖.
When this is smaller than a chosen tolerance (chosen again, by trial and error, and indicated
by the laboratory assistant), we decide that the ‘improvements‘ should stop. In this laboratory,
we will use both, as we do not have a proof that the second method will ever be met, but this
is the preferred one, since it actually shows that a (local) solution was found.

2 Implementation

We give the following MATLAB R© code for the implemetation of the above algorithm:

% offline oe algorithm

% clear console, workspace and close figures

clc;

clear all

close all

% load data

data = load(’lab6_1.mat’);

u = data.id.u;

y = data.id.y;

% plot data

plot(u);

hold on;

plot(y,’r’);

title(’input data’);

3

legend(’u’, ’y’);

xlabel(’time [s]’)

% choose orders

nf = 2;

nb = 2;

np = 0;

% choose maximum number of iterations

tmax = 200;

% initialize initial guess of parameters

theta = ones(nf+nb,1)/(nf+nb);

% theta = rand(nf+nb,1); % alternative rand init

% choos step scalar and accuracy

alpha = 0.1;

threshold = 1e-5;

% pad with zeros to account for negative indexes

y_ = [zeros(nf+nb+np,1);y];

u_ = [zeros(nf+nb+np,1);u];

% miscelanous initializations

stop = 0;

t = 1;

N = length(y);

while (t < tmax) && (stop < 1)

t = t + 1;

% collect actual parameters (found so far)

th_f = theta(1:nf);

th_b = theta(nf+1:end);

% compute error and derivatives, together with dJ/d_theta

% and (Gauss approximation of) d2J/d_theta^2

% initialize

dJ = zeros(nf+nb, 1);

H = zeros(nf+nb, nf+nb);

% init ’e’ vector

e_ = zeros(nf+nb+np,1); % for now

dE = zeros(nf+nb,nf);

% compute e

for i = nf+nb+np+1:N+nf+nb+np

e_(i) = y_(i) + y_(i-1:-1:i-nf)’*th_f - ...

u_(i-1-np:-1:i-nb-np)’*th_b - ...

e_(i-1:-1:i-nf)’*th_f;

end

4

% compute de_k, de_{k-1}, ..., de_{k-na}

for i = nf+nb+np+1:N+nf+nb+np

L = [y_(i-1:-1:i-nf); -u_(i-1-np:-1:i-nb-np)];

Le = [-e_(i-1:-1:i-nf); zeros(nb,1)];

de = L + Le - dE*th_f;

dE = [de dE(:,1:nf-1)];

dJ = dJ + e_(i)*de;

H = H + de*de’;

end

% apply Gauss-Newton formula

theta_ = theta;

theta = theta - alpha*inv(H)*dJ;

if norm(theta - theta_) < threshold

stop = 1;

end

end

% retrieve near-optimal parameters

F = [1 theta(1:nf)’];

B = [0 theta(nf+1:end)’];

% create model

oemodel = idpoly(1,B,1,1,F,0,data.id.Ts);

figure

compare(oemodel, data.val);

% MATLAB solution

figure

moe = oe(data.id,[nb,nf,np+1]);

compare(moe,data.val);

3 Results

Upon execution, the above script produces the following figures:

5

Figure 1: Identification Data

Figure 2: The presented code

Figure 3: The MATLAB R© solution

6

