
System Identification – IV method

Costandin Marius

1 Theory

Let t0, t1, . . . , tN be some time moments in arithmetic progression, ti+1 − ti = Ts, with the
ratio being the sampling time. We denote the output of the process by the letter y and the
input of the process by the letter u. Furthermore, for simplicity of notation, let yk = y(tk)
and uk = u(tk), that is the output of the process which is measured at the time moment tk
respectively the input which is given to the process at the time moment tk.

Then let

Y(z) =
∑
k∈Z

yk · z−k U(z) =
∑
k∈Z

uk · z−k (1)

be the so called Z transforms of the sequences (yk)k∈Z and (uk)k∈Z with yk = 0 for an integer
k ≤ 0 and uk = 0 for an integer k < 0.

Althought in this laboratory we study the IV (Instrumental Variable) method, let us recall
the ARX method:

Y(z) =
B(z)

A(z)
· z−np · U(z) +

1

A(z)
· E(z) (2)

where

B(z) = b1 · z−1 + . . .+ bnb
· z−nb

A(z) = 1 + a1 · z−1 + . . .+ ana · z−na (3)

with na, nb, np ∈ N∪{0}. Multiplying both sides by A(z) and applying the inverse Z transform,
one obtains:

yk + a1 · yk−1 + . . .+ ana · yk−na = b1 · uk−np−1 + . . .+ bnb
· uk−np−nb

+ ek (4)

and then:


y1
y2
...
yN

 =


−y0 . . . −y1−na u−np . . . u1−nb−np

−y1 . . . −y2−na u1−np . . . 2− nb − np
...

. . .
...

...
. . .

...
−yN−1 . . . −yN−na uN−1−np . . . uN−nb−np

 ·


a1
...
ana

b1
...
bnb


+


e1
e2
...
eN


Y = Φ · θ + E (5)

where Y =
[
y1 . . . yN

]
be the vector of measurements, Φ be the resolvent matrix in the above

equation (5), θ =
[
a1 . . . ana b1 . . . bnb

]T
and E =

[
e1 . . . eN

]T
.

Let us consider the quantity

J = e21 + . . .+ e2N == ET · E (6)

We found, in ARX dedicated laboratory, that θ which minimizes J is:

θ =
(
ΦT · Φ

)−1 · ΦT · Y (7)

1

Remark 1.1 A further improvement can be made to (7) from the numeric point of view, by
letting Lk denote the k’th line of matrix Φ. In this case ΦT · Φ =

∑N
k=1 L

T
k · Lk and ΦT · Y =∑N

k=1 L
T
k · yk therefore (7) becomes

θ =

(
N∑
k=1

LTk · Lk

)−1
·
N∑
k=1

LTk · yk (8)

Assume, we are given the measured data in form of vectors Y and U . Then it is easy to
obtain Φ and produce the solution (7). But how accurate is it? Let θ? be the true parameter
vector. Then we are interested in the difference:

θ? − θ =

(
N∑
k=1

LTk · Lk

)−1(N∑
k=1

LTk · Lk

)
θ? −

(
N∑
k=1

LTk · Lk

)−1
·
N∑
k=1

LTk · yk

=

(
N∑
k=1

LTk · Lk

)−1
·
N∑
k=1

LTk (Lk · θ? − yk) (9)

This difference is the null vector if
∑N

k=1 L
T
k (Lk · θ? − yk) is also the null vector. Therefore, in

the following we take a closer look at this quantity:

Q =
1

N

N∑
k=1

LTk (Lk · θ? − yk) =



1
N

∑N
k=1 yk−1(Lk · θ? − yk)

...
1
N

∑N
k=1 yk−na(Lk · θ? − yk)

1
N

∑N
k=1 uk−1−np(Lk · θ? − yk)

...
1
N

∑N
k=1 uk−nb−np(Lk · θ? − yk)


=



1
N

∑N
k=1 yk−1vk

...
1
N

∑N
k=1 yk−navk

1
N

∑N
k=1 uk−1−npvk

...
1
N

∑N
k=1 uk−nb−npvk


(10)

where vk = Lk · θ? − yk.
If f, g are stochastic processes jointly wide-sense stationary, then one approximates the

cross-covariance of these two as:

Rfg(τ) =
1

N

N∑
k=1

(
f(k)− f̄

)
· (g(k − τ)− ḡ) = . . . =

N∑
k=1

f(k) · g(k − τ)− f̄ · ḡ (11)

where f̄ = 1
N ·
∑N

k=1 f(k) and ḡ = 1
N ·
∑N

k=1 g(k) and we assumed that also ḡ = 1
N

∑N
k=1 g(k−τ)

However, if v̄ = 0 follows:

Q =



Rvy(−1)
...

Rvy(−na)
Rvu(−1− np)

...
Rvu(−nb − np)


(12)

Because vk (measurement and/or process noise) and the input uk are independent (which means
their covariance function is zero), for Q = 0na+nb

is sufficient to have the independence of vk
and yk−τ for (τ > 0). But for instance, take τ = 1, hence yk−1 contains vk−1. Therefore, we are
essentially requiring vk to be uncorrelated with its past values. This along with the fact that
its mean in zero qualifies vk as white noise. It is concluded that the equation (8) gives unbiased

2

estimation of the parameter vector only in the case when prediction error is white noise, ARX
models.

In order to remove this limitation, IV (instrumental variable) method proposes the following
estimator:

θ =

(
N∑
k=1

ZTk · Lk

)−1
·
N∑
k=1

ZTk · yk (13)

In this situation one obtains:

θ? − θ = . . . =

(
N∑
k=1

ZTk · Lk

)−1
·
N∑
k=1

ZTk (LTk · θ? − yk)

=

(
N∑
k=1

ZTk · Lk

)−1
·
N∑
k=1

ZTk vk (14)

Now, if the components of Zk and vk are independent, one can assure that the covariance
function of the components of Zk and vk is zero, hence the estimation is unbiased.

In this laboratory we populate Zk by modifying Lk to make it independent of vk: the
positions containing uk are left unchanged, while the positions containing yk are populated
with some estimates of yk which do not contain measurement of process noise. These estimates
are made using some rough initial guess of the parameter vector (the one we are trying to find
right now). This guess is done using the ARX algorithm. Of course it will not be perfect, but
it will, hopefully, help us to obtain a better solution.

2 Implementation

In the following, a MATLAB R© code is provided to implement the above algorithm:

% offline iv method

% arx offline algorithm

% clear console, clear workspace, close figures

clc;

clear all

close all

% load the data

data = load(’lab9_4’);

u = data.id.u;

y = data.id.y;

% plot the data, just for visualization

plot(u);

hold on

plot(y,’r’);

title(’initial data’);

xlabel(’time [s]’)

legend(’u’,’y’);

% choose parameters: ... somehow ...

3

na = data.n;

nb = data.n;

np = 0;

% pad with zeros to account for negative indexes

y_ = [zeros(na+nb+np,1);y]’;

u_ = [zeros(na+nb+np,1);u]’;

% initilize the sums with zero matrices of appropriate size

S_1 = zeros(na+nb);

S_2 = zeros(na+nb,1);

% use arx algo to get an initial estimate of theta

m_arx = arx(data.id,[na,nb,np+1]);

theta_ = [m_arx.A(2:end) m_arx.B(np+2:end)]’;

% init the simulated output

y_sim = zeros(1,na+nb+np);

% begin iterations

for i = na+nb+np+1:length(y_)

% get a line in matrix Phi

L = [-y_(i-1:-1:i-na) u_(i-1-np:-1:i-nb-np)];

% get Z

Z = [-y_sim(i-1:-1:i-na) u_(i-1-np:-1:i-nb-np)];

% compute y_sim using theta_

y_sim(i) = Z*theta_;

% update the sums

S_1 = S_1 + Z’*L;

S_2 = S_2 + Z’*y_(i);

end

% find theta

th = inv(S_1)*S_2;

% extract polynomials

A = [1 th(1:na)’];

B = [zeros(1,np), 0, th(na+1:end)’];

% validate: Ts is needed here

figure

sys_ = idpoly(A,B,1,1,1,0,data.val.ts);

compare(data.val,sys_);

% --------------------------------------

% ------- matlab solution

% --------------------------------------

figure

miv = iv(data.id,[nb,na,np+1],m_arx.A,m_arx.B);

compare(miv,data.val);

4

figure

compare(m_arx, data.val);

Remark 2.1 This algorithm does not always converge!

3 Results

Upon running the above code the following figures are obtained:

Figure 1: Initial Data

Figure 2: Compare Results: the proposed code

5

Figure 3: Compare Results: matlab solution

Figure 4: Compare Results: Initial ARX identification

6

