
System Identification – ARX method

Costandin Marius

1 Theory

Let t0, t1, . . . , tN be some time moments in arithmetic progression, ti+1 − ti = Ts, with the
ratio being the sampling time. We denote the output of the process by the letter y and the
input of the process by the letter u. Furthermore, for simplicity of notation, let yk = y(tk)
and uk = u(tk), that is the output of the process which is measured at the time moment tk
respectively the input which is given to the process at the time moment tk.

Then let

Y(z) =
∑
k∈Z

yk · z−k U(z) =
∑
k∈Z

uk · z−k (1)

be the so called Z transforms of the sequences (yk)k∈Z and (uk)k∈Z with yk = 0 for an integer
k ≤ 0 and uk = 0 for an integer k < 0.

The ARX method considers the following input-output relation:

Y(z) =
B(z)

A(z)
· z−np · U(z) +

1

A(z)
· E(z) (2)

where

B(z) = b1 · z−1 + . . .+ bnb
· z−nb

A(z) = 1 + a1 · z−1 + . . .+ ana · z−na (3)

with na, nb, np ∈ N∪{0}. Multiplying both sides by A(z) and applying the inverse Z transform,
one obtains:

yk + a1 · yk−1 + . . .+ ana · yk−na = b1 · uk−np−1 + . . .+ bnb
· uk−np−nb

+ ek (4)

hence it is obtained:

yk =
[
−yk−1 . . . −yk−na uk−1−np . . . uk−nb−np

]
·



a1
...
ana

b1
...
bnb


+ ek (5)

Letting k successively take the values 1, 2, . . . , N in (5), one obtains:


y1
y2
...
yN

 =


−y0 . . . −y1−na u−np . . . u1−nb−np

−y1 . . . −y2−na u1−np . . . 2− nb − np
...

. . .
...

...
. . .

...
−yN−1 . . . −yN−na uN−1−np . . . uN−nb−np

 ·


a1
...
ana

b1
...
bnb


+


e1
e2
...
eN

 (6)

Let Y =
[
y1 . . . yN

]
be the vector of measurements, Φ be the resolvent matrix in the

above equation (6), θ =
[
a1 . . . ana b1 . . . bnb

]T
and E =

[
e1 . . . eN

]T
. Then, (6) is

rewritten as follows:

Y = Φ · θ + E ⇐⇒ E = Y − Φ · θ (7)

1



Let us then consider the quantity J = ET ·E. It is easy to see that once the inputs and outputs
are given, that is yks and uks, for different values of θ, there will be different values of J . We
search for θ such that J = ET · E is the smallest. One can observe that

J = e21 + . . .+ e2N (8)

For this, consider the operator:

∂

∂θ
=
[

∂
∂a1

. . . ∂
∂bnb

]T
(9)

that is a column vector of partial derivatives with respect to the components of θ. We require

∂

∂θ
J =

[
0 . . . 0

]T
= 0(na+nb)×1 ⇐⇒


∂J
∂a1

= 0
...
∂J
∂bnb

= 0

(10)

that is

∂

∂θ
J =

∂

∂θ
(ET · E) =


∂J
∂a1
...
∂J
∂bnb

 =


∂ET ·E
∂a1
...

∂ET ·E
∂bnb

 = 2 · ∂E
T

∂θ
· E (11)

because, one obtains, for instance, for the first component:

∂ET · E
∂a1

=
∂ET

∂a1
· E + ET · ∂E

∂a1
= 2 · ∂E

T

∂a1
· E (12)

and even more:

∂ET

∂θ
=


∂e1
∂a1

. . . ∂eN
∂a1

...
. . .

...
∂e1
∂bnb

. . . ∂eN
∂bnb

 =


∂ET

∂a1
...

∂ET

∂bnb

 (13)

In equation (7), let C1, . . . , Cna+nb
denote the columns of matrix Φ. Then

ET = Y T −
[
a1 . . . ana b1 . . . bnb

]
·

 CT
1
...

CT
na+nb

 (14)

therefore it is easy to see that

∂ET

∂a1
= CT

1 . . .
∂ET

∂bnb

= CT
na+nb

⇒ ∂ET

∂θ
=

 CT
1
...

CT
na+nb

 = ΦT (15)

From (12) one obtains:

0na+nb,1 =
∂ET

∂θ
· E ⇐⇒ ΦT · (Y − Φ · θ) = 0na+nb,1 (16)

therefore

θ =
(
ΦT · Φ

)−1 · ΦT · Y (17)

Remark 1.1 A further improvement can be made to (17) from the numeric point of view, by
letting Lk denote the k’th line of matrix Φ. In this case ΦT · Φ =

∑N
k=1 L

T
k · Lk and ΦT · Y =∑N

k=1 L
T
k · yk therefore (17) becomes

θ =

(
N∑
k=1

LT
k · Lk

)−1
·

N∑
k=1

LT
k · yk (18)

2



2 Implementation

Assume the available data for identification is composed out of two arrays Y =
[
y0 y1 . . . yN

]T
and U =

[
u0 u1 . . . uN

]T
. Next, one has to decide on the orders of the system, and choose

na, nb, np, see equations (2) and (3). Once this information is available, one will simply form
the matrix Φ (using Y and U and equation (6)) and then apply the formula given in equation
(17) or (18) to obtain θ. Next, the coefficients of the A,B polynomials are extracted from θ
according to (5),(6).

In the following, a MATLAB R© code is provided to implement just that:

% arx offline algorithm

% clear console, clear workspace, close figures

clc;

clear all

close all

% Load the data: data is in .mat format and in the working directory.

% The file is provided by the laboratory assistant.

data = load(’lab6_2’);

u = data.id.u;

y = data.id.y;

% plot the data, just for visualization

plot(u);

hold on

plot(y,’r’);

title(’initial data’);

xlabel(’time [s]’)

legend(’u’,’y’);

% choose parameters: ... somehow ...

na = 1;

nb = 1;

np = 0;

% pad with zeros to account for negative indexes

y_ = [zeros(na+nb+np,1);y]’;

u_ = [zeros(na+nb+np,1);u]’;

% initilize the sums with zero matrices of appropriate size

S_1 = zeros(na+nb);

S_2 = zeros(na+nb,1);

% begin iterations

for i = na+nb+np+1:length(y_)

% get a line in matrix Phi

L = [-y_(i-1:-1:i-na) u_(i-1-np:-1:i-nb-np)];

% update the sums

S_1 = S_1 + L’*L;

3



S_2 = S_2 + L’*y_(i);

end

% find theta

th = inv(S_1)*S_2;

% extract polynomials

A = [1 th(1:na)’];

B = [zeros(1,np), 0, th(na+1:end)’];

% validate:Ts is needed here

figure

sys_ = idpoly(A,B,1,1,1,0,data.val.ts);

compare(data.val,sys_);

% --------------------------------------

% ------- matlab solution

% --------------------------------------

figure

marx = arx(data.id,[na,nb,1]);

compare(marx,data.val);

Remark 2.1 Sometimes, if the identification data does not meet the ARX assumpltions (about
the error model), then higher orders are required for a good fit.

3 Results

Upon running the above code the following figures are obtained:

Figure 1: Initial Data

4



Figure 2: Compare Results: the proposed code

Figure 3: Compare Results: matlab solution

5


