System Identification - ARX method

Costandin Marius

1 Theory

Let $t_{0}, t_{1}, \ldots, t_{N}$ be some time moments in arithmetic progression, $t_{i+1}-t_{i}=T_{s}$, with the ratio being the sampling time. We denote the output of the process by the letter y and the input of the process by the letter u. Furthermore, for simplicity of notation, let $y_{k}=y\left(t_{k}\right)$ and $u_{k}=u\left(t_{k}\right)$, that is the output of the process which is measured at the time moment t_{k} respectively the input which is given to the process at the time moment t_{k}.

Then let

$$
\begin{equation*}
\mathcal{Y}(z)=\sum_{k \in \mathbb{Z}} y_{k} \cdot z^{-k} \quad \mathcal{U}(z)=\sum_{k \in \mathbb{Z}} u_{k} \cdot z^{-k} \tag{1}
\end{equation*}
$$

be the so called \mathcal{Z} transforms of the sequences $\left(y_{k}\right)_{k \in \mathbb{Z}}$ and $\left(u_{k}\right)_{k \in \mathbb{Z}}$ with $y_{k}=0$ for an integer $k \leq 0$ and $u_{k}=0$ for an integer $k<0$.

The ARX method considers the following input-output relation:

$$
\begin{equation*}
\mathcal{Y}(z)=\frac{B(z)}{A(z)} \cdot z^{-n_{p}} \cdot \mathcal{U}(z)+\frac{1}{A(z)} \cdot \mathcal{E}(z) \tag{2}
\end{equation*}
$$

where

$$
\begin{align*}
& B(z)=b_{1} \cdot z^{-1}+\ldots+b_{n_{b}} \cdot z^{-n_{b}} \\
& A(z)=1+a_{1} \cdot z^{-1}+\ldots+a_{n_{a}} \cdot z^{-n_{a}} \tag{3}
\end{align*}
$$

with $n_{a}, n_{b}, n_{p} \in \mathbb{N} \cup\{0\}$. Multiplying both sides by $A(z)$ and applying the inverse \mathcal{Z} transform, one obtains:

$$
\begin{equation*}
y_{k}+a_{1} \cdot y_{k-1}+\ldots+a_{n_{a}} \cdot y_{k-n_{a}}=b_{1} \cdot u_{k-n_{p}-1}+\ldots+b_{n_{b}} \cdot u_{k-n_{p}-n_{b}}+e_{k} \tag{4}
\end{equation*}
$$

hence it is obtained:

$$
y_{k}=\left[\begin{array}{llllll}
-y_{k-1} & \ldots & -y_{k-n_{a}} & u_{k-1-n_{p}} & \ldots & u_{k-n_{b}-n_{p}}
\end{array}\right] \cdot\left[\begin{array}{c}
a_{1} \tag{5}\\
\vdots \\
a_{n_{a}} \\
b_{1} \\
\vdots \\
b_{n_{b}}
\end{array}\right]+e_{k}
$$

Letting k successively take the values $1,2, \ldots, N$ in (5), one obtains:

$$
\left[\begin{array}{c}
y_{1} \tag{6}\\
y_{2} \\
\vdots \\
y_{N}
\end{array}\right]=\left[\begin{array}{cccccc}
-y_{0} & \cdots & -y_{1-n_{a}} & u_{-n_{p}} & \cdots & u_{1-n_{b}-n_{p}} \\
-y_{1} & \cdots & -y_{2-n_{a}} & u_{1-n_{p}} & \ldots & 2-n_{b}-n_{p} \\
\vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\
-y_{N-1} & \cdots & -y_{N-n_{a}} & u_{N-1-n_{p}} & \cdots & u_{N-n_{b}-n_{p}}
\end{array}\right] \cdot\left[\begin{array}{c}
a_{1} \\
\vdots \\
a_{n_{a}} \\
b_{1} \\
\vdots \\
b_{n_{b}}
\end{array}\right]+\left[\begin{array}{c}
e_{1} \\
e_{2} \\
\vdots \\
e_{N}
\end{array}\right]
$$

Let $Y=\left[\begin{array}{lll}y_{1} & \cdots & y_{N}\end{array}\right]$ be the vector of measurements, Φ be the resolvent matrix in the above equation (6), $\theta=\left[\begin{array}{llllll}a_{1} & \ldots & a_{n_{a}} & b_{1} & \ldots & b_{n_{b}}\end{array}\right]^{T}$ and $E=\left[\begin{array}{llll}e_{1} & \ldots & e_{N}\end{array}\right]^{T}$. Then, (6) is rewritten as follows:

$$
\begin{equation*}
Y=\Phi \cdot \theta+E \Longleftrightarrow E=Y-\Phi \cdot \theta \tag{7}
\end{equation*}
$$

Let us then consider the quantity $J=E^{T} \cdot E$. It is easy to see that once the inputs and outputs are given, that is $y_{k} \mathrm{~s}$ and $u_{k} \mathrm{~s}$, for different values of θ, there will be different values of J. We search for θ such that $J=E^{T} \cdot E$ is the smallest. One can observe that

$$
\begin{equation*}
J=e_{1}^{2}+\ldots+e_{N}^{2} \tag{8}
\end{equation*}
$$

For this, consider the operator:

$$
\frac{\partial}{\partial \theta}=\left[\begin{array}{lll}
\frac{\partial}{\partial a_{1}} & \cdots & \frac{\partial}{\partial b_{n_{b}}} \tag{9}
\end{array}\right]^{T}
$$

that is a column vector of partial derivatives with respect to the components of θ. We require

$$
\frac{\partial}{\partial \theta} J=\left[\begin{array}{lll}
0 & \ldots & 0
\end{array}\right]^{T}=0_{\left(n_{a}+n_{b}\right) \times 1} \Longleftrightarrow\left\{\begin{array}{l}
\frac{\partial J}{\partial a_{1}}=0 \tag{10}\\
\vdots \\
\frac{\partial J}{\partial b_{n_{b}}}=0
\end{array}\right.
$$

that is

$$
\frac{\partial}{\partial \theta} J=\frac{\partial}{\partial \theta}\left(E^{T} \cdot E\right)=\left[\begin{array}{c}
\frac{\partial J}{\partial a_{1}} \tag{11}\\
\vdots \\
\frac{\partial J}{\partial b_{n}}
\end{array}\right]=\left[\begin{array}{c}
\frac{\partial E^{T} \cdot E}{\partial a_{1}} \\
\vdots \\
\frac{\partial E^{T} \cdot E}{\partial b_{n_{b}}}
\end{array}\right]=2 \cdot \frac{\partial E^{T}}{\partial \theta} \cdot E
$$

because, one obtains, for instance, for the first component:

$$
\begin{equation*}
\frac{\partial E^{T} \cdot E}{\partial a_{1}}=\frac{\partial E^{T}}{\partial a_{1}} \cdot E+E^{T} \cdot \frac{\partial E}{\partial a_{1}}=2 \cdot \frac{\partial E^{T}}{\partial a_{1}} \cdot E \tag{12}
\end{equation*}
$$

and even more:

$$
\frac{\partial E^{T}}{\partial \theta}=\left[\begin{array}{ccc}
\frac{\partial e_{1}}{\partial a_{1}} & \ldots & \frac{\partial e_{N}}{\partial a_{1}} \tag{13}\\
\vdots & \ddots & \vdots \\
\frac{\partial e_{1}}{\partial b_{n_{b}}} & \cdots & \frac{\partial e_{N}}{\partial b_{n_{b}}}
\end{array}\right]=\left[\begin{array}{c}
\frac{\partial E^{T}}{\partial a_{1}} \\
\vdots \\
\frac{\partial E^{T}}{\partial b_{n_{b}}}
\end{array}\right]
$$

In equation (7), let $C_{1}, \ldots, C_{n_{a}+n_{b}}$ denote the columns of matrix Φ. Then

$$
E^{T}=Y^{T}-\left[\begin{array}{llllll}
a_{1} & \ldots & a_{n_{a}} & b_{1} & \ldots & b_{n_{b}}
\end{array}\right] \cdot\left[\begin{array}{c}
C_{1}^{T} \tag{14}\\
\vdots \\
C_{n_{a}+n_{b}}^{T}
\end{array}\right]
$$

therefore it is easy to see that

$$
\frac{\partial E^{T}}{\partial a_{1}}=C_{1}^{T} \quad \ldots \quad \frac{\partial E^{T}}{\partial b_{n_{b}}}=C_{n_{a}+n_{b}}^{T} \quad \Rightarrow \quad \frac{\partial E^{T}}{\partial \theta}=\left[\begin{array}{c}
C_{1}^{T} \tag{15}\\
\vdots \\
C_{n_{a}+n_{b}}^{T}
\end{array}\right]=\Phi^{T}
$$

From (12) one obtains:

$$
\begin{equation*}
0_{n_{a}+n_{b}, 1}=\frac{\partial E^{T}}{\partial \theta} \cdot E \Longleftrightarrow \Phi^{T} \cdot(Y-\Phi \cdot \theta)=0_{n_{a}+n_{b}, 1} \tag{16}
\end{equation*}
$$

therefore

$$
\begin{equation*}
\theta=\left(\Phi^{T} \cdot \Phi\right)^{-1} \cdot \Phi^{T} \cdot Y \tag{17}
\end{equation*}
$$

Remark 1.1 A further improvement can be made to (17) from the numeric point of view, by letting L_{k} denote the k 'th line of matrix Φ. In this case $\Phi^{T} \cdot \Phi=\sum_{k=1}^{N} L_{k}^{T} \cdot L_{k}$ and $\Phi^{T} \cdot Y=$ $\sum_{k=1}^{N} L_{k}^{T} \cdot y_{k}$ therefore (17) becomes

$$
\begin{equation*}
\theta=\left(\sum_{k=1}^{N} L_{k}^{T} \cdot L_{k}\right)^{-1} \cdot \sum_{k=1}^{N} L_{k}^{T} \cdot y_{k} \tag{18}
\end{equation*}
$$

2 Implementation

Assume the available data for identification is composed out of two arrays $Y=\left[\begin{array}{llll}y_{0} & y_{1} & \ldots & y_{N}\end{array}\right]^{T}$ and $U=\left[\begin{array}{llll}u_{0} & u_{1} & \ldots & u_{N}\end{array}\right]^{T}$. Next, one has to decide on the orders of the system, and choose n_{a}, n_{b}, n_{p}, see equations (2) and (3). Once this information is available, one will simply form the matrix Φ (using Y and U and equation (6)) and then apply the formula given in equation (17) or (18) to obtain θ. Next, the coefficients of the A, B polynomials are extracted from θ according to (5),(6).

In the following, a $M A T L A B^{\circledR}$ code is provided to implement just that:
\% arx offline algorithm
\% clear console, clear workspace, close figures
clc;
clear all
close all
\% Load the data: data is in .mat format and in the working directory.
\% The file is provided by the laboratory assistant.
data = load('lab6_2');
u = data.id.u;
y = data.id.y;
\% plot the data, just for visualization
plot(u);
hold on
plot(y, 'r');
title('initial data');
xlabel('time [s]')
legend('u','y');
\% choose parameters: ... somehow ...
na $=1$;
$\mathrm{nb}=1$;
$\mathrm{np}=0$;
\% pad with zeros to account for negative indexes
$y_{-}=[z e r o s(n a+n b+n p, 1) ; y]$ ';
$u_{-}=[\operatorname{zeros}(n a+n b+n p, 1) ; u]$;
\% initilize the sums with zero matrices of appropriate size
S_1 = zeros(na+nb);
S_2 = zeros(na+nb,1);
\% begin iterations
for $i=n a+n b+n p+1: l e n g t h\left(y_{-}\right)$
\% get a line in matrix Phi
$\mathrm{L}=\left[-y_{-}(\mathrm{i}-1:-1: i-n a) u_{-}(i-1-n p:-1: i-n b-n p)\right] ;$
\% update the sums
S_1 = S_1 + L'*L;

```
    S_2 = S_2 + L'*y_(i);
end
% find theta
th = inv(S_1)*S_2;
% extract polynomials
A = [1 th(1:na)'];
B = [zeros(1,np), 0, th(na+1:end)'];
% validate:Ts is needed here
figure
sys_ = idpoly(A,B,1,1,1,0,data.val.ts);
compare(data.val,sys_);
% -------------------------------------------
% ------- matlab solution
% -----------------------------------------
figure
marx = arx(data.id,[na,nb,1]);
compare(marx,data.val);
```

Remark 2.1 Sometimes, if the identification data does not meet the ARX assumpltions (about the error model), then higher orders are required for a good fit.

3 Results

Upon running the above code the following figures are obtained:

Figure 1: Initial Data

Figure 2: Compare Results: the proposed code

Figure 3: Compare Results: matlab solution

