
System Identification – ARMAX method

Costandin Marius

1 Theory

Let t0, t1, . . . , tN be some time moments in arithmetic progression, ti+1 − ti = Ts, with the
ratio being the sampling time. We denote the output of the process by the letter y and the
input of the process by the letter u. Furthermore, for simplicity of notation, let yk = y(tk)
and uk = u(tk), that is the output of the process which is measured at the time moment tk
respectively the input which is given to the process at the time moment tk.

Then let

Y(z) =
∑
k∈Z

yk · z−k U(z) =
∑
k∈Z

uk · z−k (1)

be the so called Z transforms of the sequences (yk)k∈Z and (uk)k∈Z with yk = 0 for an integer
k ≤ 0 and uk = 0 for an integer k < 0.

The ARMAX method considers the following input-output relation:

Y(z) =
B(z)

A(z)
· z−np · U(z) +

C(z)

A(z)
E(z) (2)

where

A(z) = 1 + a1 · z−1 + . . .+ ana · z−na

B(z) = b1 · z−1 + . . .+ bnb
· z−nb

C(z) = 1 + c1 · z−1 + . . .+ cnc · z−nc (3)

with na, nb, nc, np ∈ N ∪ {0}. Multiplying both sides by A(z) and applying the inverse Z
transform, one obtains:

yk + a1 · yk−1 + . . .+ ana · yk−na =b1 · uk−np−1 + . . .+ bnb
· uk−np−nb

+

+ ek + c1 · ek−1 + . . .+ cnc · ek−nc (4)

hence it is obtained:

ek = yk+a1 · yk−1 + . . .+ ana · yk−na − b1 · uk−np−1 − . . .− bnb
· uk−np−nb

−
−c1 · ek−1 − . . .− cnc · ek−nc (5)

Let, as before,

J =

N∑
k=1

e2k (6)

It is obvious, from (5), that once yk and uk are known (measured), J depends upon the choice

of θ =
[
a1 . . . ana b1 . . . bnb

c1 . . . cnc

]T
. We search for θ such that J is minimized.

This, unlike the ARX case, is a nonlinear optimization problem in the variable θ. Indeed, in the
ARX case, one finds θ by simply letting ∂J

∂θ = 0n× 1 (where n is the length of θ), which turns
out to be a linear equation in θ, see ARX method. In order to further exemplify this problem,
assume the simpler case where na = nb = nc = 1, np = 0:

ek = yk + a · yk−1 − b · uk−1 − c · ek−1
∂ek
∂a

= yk−1 − c ·
∂ek−1
∂a

∂ek
∂b

= −uk−1 − c ·
∂ek−1
∂b

∂ek
∂c

= −ek−1 − c ·
∂ek−1
∂c

(7)

1

If one requires 
∂J
∂a = 2 ·

∑N
k=1 ek ·

∂ek
∂a = 0

∂J
∂b = 2 ·

∑N
k=1 ek ·

∂ek
∂b = 0

∂J
∂c = 2 ·

∑N
k=1 ek ·

∂ek
∂c = 0

(8)

then by replacing (7) in (8), one can see that the equations do NOT remain linear in a, b and c.
In this condition, we search for θ which minimizes J using an iterative algorithm. Start

with a ‘guess‘ of θ0 (for instance initialize θ with random numbers) and then ‘improve‘ at each
iteration. There are many ways to make this ‘improvement‘, see optimization algorithms.

Many optimization algorithms function in the following way: at each iteration/improvement
l, they provide a direction Vl and a scalar αl. The new computed θl+1 will be:

θl+1 = θl + αl · Vl (9)

For this laboratory, we will use/be inspired from, the so called, Gauss-Newton algorithm:

θl+1 = θl − α ·H−1 · ∇TJ (10)

therefore, the scalar will be α, and the direction is Vl = −H−1 · ∇TJ . The exact meaning of
these will follow shortly. In order to elegantly explain who H is, we will recall the so called
‘nabla‘ operator:

∇ =
[
∂
∂a1

. . . ∂
∂cnc

]
(11)

therefore ∇TJ = ∂J
∂θ =


∂J
∂a1
...
∂J
∂cnc

. With this in mind, one defines H = ∇T · ∇ · J , the Hessian

matrix. Therefore:

∇TJ =
N∑
k=1

∇T e2k = 2 ·
N∑
k=1

ek ·
∂ek
∂θ

H = ∇T · ∇J =


∂
∂a1
...
∂

∂cnc

 · [∂
∂a1

. . . ∂
∂cnc

]
J =

N∑
k=1

∇T · ∇ · e2k

= 2 ·
N∑
k=1

∇T · (ek · ∇ek) = 2 ·
N∑
k=1

∇T ek · ∇ek + 2 ·
N∑
k=1

ek · ∇T∇ek (12)

Therefore, since essentially ∇ =
(
∂
∂θ

)T
:

H = 2 ·
N∑
k=1

∂ek
∂θ
·
∂eTk
∂θ

+ 2 ·
N∑
k=1

ek ·
∂

∂θ
·
(
∂ek
∂θ

)T

≈ 2 ·
N∑
k=1

∂ek
∂θ
·
∂eTk
∂θ

(13)

2

where ∂ek
∂θ , according to (5), is given by the following dynamical system:

∂ek
∂a1

= yk−1 − c1 · ∂ek−1

∂a1
− . . .− cnc

∂ek−nc
∂a1

...
∂ek
∂ana

= yk−na − c1 ·
∂ek−1

∂ana
− . . .− cnc

∂ek−nc
∂ana

∂ek
∂b1

= −uk−np−1 − c1 ·
∂ek−1

∂b1
− . . .− cnc

∂ek−nc
∂b1

...
∂ek
∂bnb

= −uk−np−nb
− c1 · ∂ek−1

∂bnb
− . . .− cnc ·

∂ek−nc
∂bnb

∂ek
∂c1

= −ek−1 − c1 · ∂ek−1

∂c1
− . . .− cnc

∂ek−nc
∂c1

...
∂ek
∂cnc

= −ek−nc − c1 ·
∂ek−1

∂cnc
− . . .− cnc

∂ek−nc
∂cnc

(14)

Remark 1.1 In order to integrate the above dynamical system for the calculation of e, we define
the following matrices

Lk =
[
yk−1 . . . yk−nf

−uk−1−np . . . −uk−nb−np −ek−1 . . . −ek−nc

]T
dEk =

[
∂ek−1

∂θ
∂ek−2

∂θ . . .
∂ek−nc
∂θ

]

θa =

 a1...
ana

 θb =

 b1...
bnb

 θc =

 c1...
cnc

 (15)

Let xj the the j’th element from the vector θ, then

∂ek
∂xj

= Lk(j)− dEk(j, :) · θc ⇐⇒
∂ek
∂θ

= Lk − dEk · θc (16)

where Lk(j) denotes the j’th element from the vector Lk and dEk(j, :) denotes the j’th column
from matrix dEk.

Before implementing the algorithm, one must answer the following question: how does such
an algorithm know when to stop? Well, as you might have noticed, each iteration is indexed
(by the letter ‘l‘), so one stopping method is to make at most M iterations. The value of M is
chosen by you, based on trial and error ... pretty much. It will however, be indicated by the
lab assistant. However, another way of stopping the algorithm is to verify the norm ‖θl+1− θl‖.
When this is smaller than a chosen tolerance (chosen again, by trial and error, and indicated
by the laboratory assistant), we decide that the ‘improvements‘ should stop. In this laboratory,
we will use both, as we do not have a proof that the second method will ever be met, but this
is the preferred one, since it actually shows that a (local) solution was found.

2 Implementation

We give the following MATLAB R© code for the implemetation of the above algorithm:

% offline armax algorithm

% no warranty

% clear console, workspace and close figures

3

clc;

clear all

close all

% load data

data = load(’lab6_1.mat’);

u = data.id.u;

y = data.id.y;

% plot data

plot(u);

hold on;

plot(y,’r’);

title(’input data’);

legend(’u’, ’y’);

xlabel(’time [s]’)

% choose orders

na = 2;

nb = 2;

nc = 2;

np = 0;

% choose maximum number of iterations

tmax = 400;

% initialize initial guess of parameters with arx result

marx = arx(data.id,[na,nb,np+1]);

theta = [marx.A(2:end) marx.B(2:end) marx.A(2:end)]’;

% choose step scalar and accuracy

alpha = 1;

threshold = 1e-5;

% pad with zeros to account for negative indexes

y_ = [zeros(na+nb+nc+np,1);y];

u_ = [zeros(na+nb+nc+np,1);u];

% miscelanous initializations

stop = 0;

t = 1;

N = length(y);

E_ = [1e3]; %some big number

theta_ = theta;

while (t < tmax) && (stop < 1)

t = t + 1;

if alpha < threshold

break;

end

% collect actual parameters (found so far)

4

th_a = theta(1:na);

th_b = theta(na+1:na+nb);

th_c = theta(na+nb+1:end);

% initialize

dJ = zeros(na+nb+nc, 1);

H = zeros(na+nb+nc);

% init ’e’ vector

e_ = zeros(na+nb+nc+np,1); % for now

% init dE matrix

dE = zeros(na+nb+nc,nc);

for i = na+nb+nc+np+1:N+na+nb+nc+np

L = [y_(i-1:-1:i-na); -u_(i-1-np:-1:i-nb-np);

-e_(i-1:-1:i-nc)];

e_(i) = y_(i) + L’*theta;

end

% we want the error to be non-increasing: decrease step otherwise

E_ = [E_ e_’*e_];

if (E_(t) - E_(t-1) > 0)

alpha = alpha/2;

theta = theta_;

% collect actual parameters (found so far)

th_a = theta(1:na);

th_b = theta(na+1:na+nb);

th_c = theta(na+nb+1:end);

end

% compute de_k, de_{k-1}, ..., de_{k-na}

for i = na+nb+nc+np+1:N+na+nb+nc+np

L = [y_(i-1:-1:i-na); -u_(i-1-np:-1:i-nb-np);

-e_(i-1:-1:i-nc)];

e_(i) = y_(i) + L’*theta;

de = L - dE*th_c;

dE = [de dE(:,1:nc-1)];

dJ = dJ + 2*e_(i)*de;

H = H + 2*(de*de’);

end

% apply Gauss-Newton formula

diri = inv(H)*dJ; % the improvement direction

if norm(diri) < threshold

stop = 1;

break;

else

5

theta_ = theta;

theta = theta - alpha*inv(H)*dJ;

end

end

% retrieve near-optimal parameters

A = [1 theta(1:na)’];

B = [zeros(1,np+1) theta(na+1:na+nb)’];

C = [1 theta(na+nb+1:end)’];

% create model

armax_model = idpoly(A,B,C,1,1,0,data.id.Ts);

figure

compare(armax_model, data.val);

% MATLAB solution

figure

marmax = armax(data.id,[na,nb,nc,np+1]);

compare(marmax,data.val);

3 Results

Upon execution, the above script produces the following figures:

Figure 1: Identification Data

6

Figure 2: The presented code

Figure 3: The MATLAB R© solution

7

